A Phase Ib open label study to assess the safety and pharmacokinetics of NUC-3373, a nucleotide analog, given in combination with standard agents used in colorectal cancer treatment (NuTide:302)

Abstract N°: TPS3617 Registry N°: NCT03428958 Email: sarah.blaade

SP Blagden¹, TRJ Evans², E Ghazaly³, C Gnanaranjan³, A De Gramont⁴, J Tabernero⁵, JD Berlin⁶ 1) Early Phase Clinical Trials Unit, Churchill Hospital, University of Oxford NHS Trust, Oxford, UK. 2) University of Glasgow, Beatson Institute for Cancer Research, Glasgow, UK. 3) Centre for Haemato-Oncology, Barts Cancer Institute, London, UK. 4) Department of Medical Oncology, Institut Hospitalier Franco-Britannique, Levallois-Perret, France. 5) Early Drug Development Unit, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, CIBERONC, Universitat Autonoma de Barcelona, Barcelona, Spain. 6) Henry-Joyce Cancer Clinic, The Vanderbilt Clinic, Nashville, TN, USA.

Background

• Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women¹ and has a 5-year survival rate of 10% for patients with metastatic disease • 5-fluorouracil (5-FU) remains standard of care for patients with CRC, either as monotherapy or in combination with other chemotherapies • Fluorodeoxyuridine-monophosphate (FUDR-MP) is the main anti-cancer metabolite of 5-FU, which binds to and inhibits thymidylate synthase (TS), reducing the pool of deoxythymidine monophosphate (dTMP), leading to cancer cell death • Key cancer resistance mechanisms are linked to reduced efficacy, poor prognosis and off-target toxicity with a 5-FU regimen² • Poor PK properties of 5-FU, including a plasma half-life of 8-14 minutes, necessitate prolonged administration times, often over 46 hours

Control

5-FU

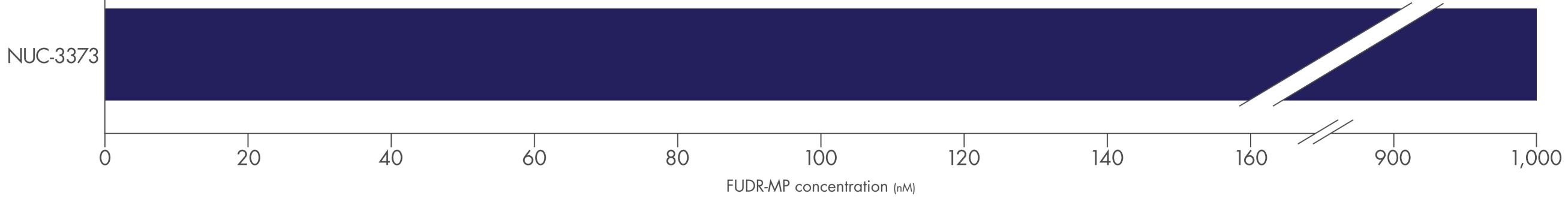
NUC-3373 generates significantly higher levels of intracellular FUDR-MP in HT29 human CRC cell line compared with 5-FU

• Effective new agents and combinations are required

5-FU Resistance Mechanisms

Susceptibility to breakdown

- Over 85% of 5-FU is broken down by dihydropyrimidine dehydrogenase (DPD)³
- Thymidine phosphorylase (TP), commonly overexpressed in tumors² or introduced by mycoplasma infection⁴, also breaks down 5-FU
- Metabolic degradation results in generation of toxic metabolites such as dihydrofluorouracil (dhFU), which is associated with hand-foot syndrome


Requirement of activation

- 5-FU is a pro-drug that requires complex intracellular enzymatic activation to generate FUDR-MP²
- Deficient enzymatic activation is linked to poor prognosis

Reliance on active transport

• Low expression of the nucleoside transporter hENT1 is associated with 5-FU resistance⁵

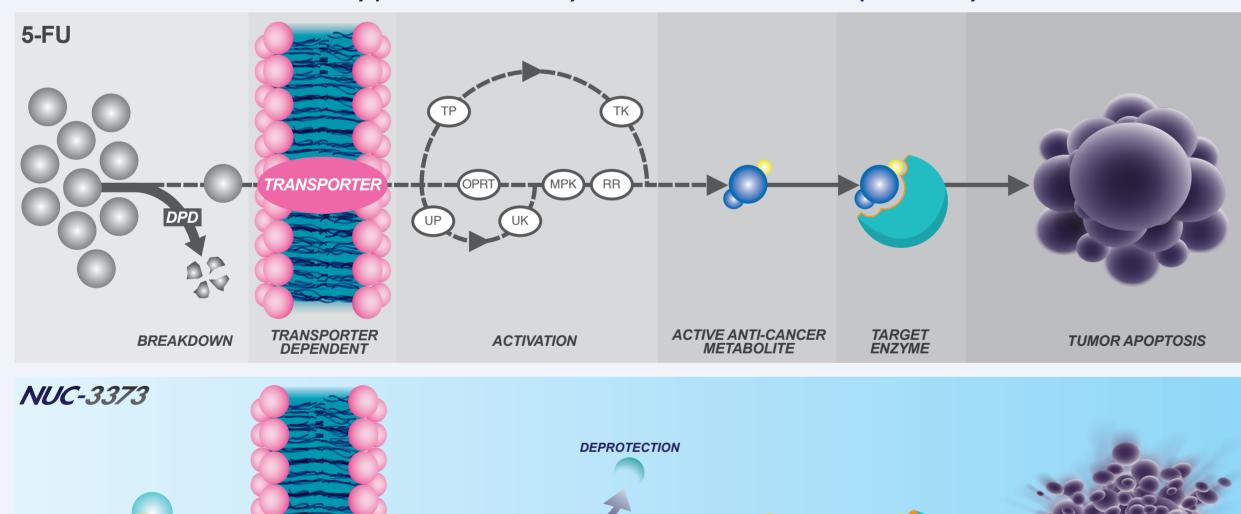
NUC-3373 bypasses the key cancer resistance pathways of 5-FU

NuTide:301 Study

NUC-3373 first-in-human study in advanced solid tumors

- This study is ongoing and the results are based on interim data $(n=21)^8$
- Patients had 10 primary cancer types, with the majority (57%) being CRC
- NUC-3373 showed an advantageous pharmacokinetic (PK) /pharmacodynamic (PD) profile compared to 5-FU, which may allow for a more convenient dosing regimen, favorable safety profile and enhanced efficacy
- o Intracellular FUDR-MP detectable at 5 minutes post-infusion with $t_{1/2}$ of 14.9±1.4 hours and still present at 48 hours
- o TS was efficiently inhibited and sequestered into ternary complexes, depleting the pool of dTMP within 2-4 hours
- o The toxic metabolite dhFU was undetectable, suggestive of an improved tolerability profile compared to 5-FU • Based on these data, the NuTide:302 study was initiated to investigate NUC-3373 in combination with other anti-cancer agents in patients with recurrent CRC

Patient Population


- Aged ≥18 years with an ECOG performance status of 0-1
- Locally advanced/unresectable or metastatic CRC
- Relapse after ≥ 2 prior lines of therapy; one must be an oxaliplatin + 5-FU containing regimen and one must be an irinotecan + 5-FU containing regimen
- Measurable disease as defined by RECIST

Methods

• Patients treated every 2 weeks until disease progression

NuTide:302: Patients with recurrent metastatic CRC

ACTIVE ANTI-CANCER SUPERIOR TUMOR APOPTOSI F-BAL Enzymes FUDR MP Thymidylate Synthase Phosphoramidate

ProTides: NucleoTide Analogs

- A new class of anti-cancer agents
- Transformative phosphoramidate chemistry
- Increase intracellular levels of active anti-cancer metabolites
- Broad clinical utility

NUC-3373: A ProTide Transformation of 5-FU

• Designed to overcome key 5-FU resistance mechanisms^{6,7}

NUC-3373 PK profile comparison with 5-FU

	NUC-3373	5-FU
Plasma t _{1/2}	9.7 hours	8-14 minutes
FUDR-MP (in PBMCs)	Detected (dose proportional)	Undetected ⁹
TS inhibition	Strong	Weak
Intracellular levels of dTMP	Depleted No change	
Toxic metabolite (dhFU)	Undetected	High levels

NuTide: 302 Study Design

Primary objective

• Determine a recommended dose of NUC-3373 in combination with agents commonly used in the treatment of CRC

Secondary objectives

- Safety and tolerability in each combination
- Effects of each combination agent on PK of NUC-3373
- Anti-tumor activity of each combination

+/- LV	Cohort	Panitumumab bevacizumab bevacizumab t irinotecan
Part 1 Randomized (n=6 patients per arm)		Part 2 (+/- LV) Assignment to Cohorts at investigator discretion (n=6-12 patients per Cohort)
NUC-3373→2wk w/o→NUC-3373+LV	1a	
NUC-3373+LV→2wk w/o→NUC-3373	1b	
	2 a	NUC-3373 + oxaliplatin
	3a	NUC-3373 + irinotecan
	2b	NUC-3373 + oxaliplatin + bevacizumab
	2 c	NUC-3373 + oxaliplatin + panitumumab
	3b	NUC-3373 + irinotecan + cetuximab

STUDY STATUS

• Study open with sites in the US, UK, Spain and France

SUMMARY

• NUC-3373 is specifically designed to overcome the key cancer

• Generates 366× higher intracellular levels of FUDR-MP than 5-FU in human CRC cells in vitro

• Up to 330x significantly greater cytotoxicity than 5-FU in vitro • Significantly greater anti-cancer activity *in vivo* compared to 5-FU Not degraded by DPD or TP • Favorable toxicology profile

• Effect of leucovorin (LV) when added to NUC-3373 on PK and PD parameters (Part 1) Exploratory objectives

 Assess markers of resistance to 5-FU in blood and pre-treatment tumor samples • Relationships between NUC-3373 PK, PD and clinical activity

cell resistance mechanisms associated with 5-FU • The NuTide:302 study will determine the optimal dose of NUC-3373 in combination with agents commonly used in the treatment of patients with CRC • NUC-3373 has the potential to offer a more effective and safer treatment option than 5-FU

1. GLOBOCAN, 2012 2. Longley DB et al. Nat Rev Cancer 2003, 3: 330–338. 3. Diasio RB & Harris BE. Clin Pharmacokinet 1999, 16: 215–237. 4. Huang S et al. World J Gastroenterol 2001, 7: 266–269. 5. Tsujie M et al. Anticancer Res 2007;27:2241–2249. 6. McGuigan C et al. J Med Chem 2011, 27:7247–7258. 7. Vande Voorde J et al. Biochem Pharmacol 2011, 82:441–452. 8. Ghazaly E et al. ESMO 2017, Poster 385-P (Abstract 3432). 9. Derissen E et al. Br J Pharmacol 2016, 81:949-957.

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO[®] and the author of this poster.